Optical Music Recognition with Convolutional Sequence-to-Sequence Models
نویسندگان
چکیده
Optical Music Recognition (OMR) is an important technology within Music Information Retrieval. Deep learning models show promising results on OMR tasks, but symbol-level annotated data sets of sufficient size to train such models are not available and difficult to develop. We present a deep learning architecture called a Convolutional Sequence-to-Sequence model to both move towards an end-to-end trainable OMR pipeline, and apply a learning process that trains on full sentences of sheet music instead of individually labeled symbols. The model is trained and evaluated on a human generated data set, with various image augmentations based on real-world scenarios. This data set is the first publicly available set in OMR research with sufficient size to train and evaluate deep learning models. With the introduced augmentations a pitch recognition accuracy of 81% and a duration accuracy of 94% is achieved, resulting in a note level accuracy of 80%. Finally, the model is compared to commercially available methods, showing a large improvements over these applications.
منابع مشابه
End-to-End Optical Music Recognition Using Neural Networks
This work addresses the Optical Music Recognition (OMR) task in an end-to-end fashion using neural networks. The proposed architecture is based on a Recurrent Convolutional Neural Network topology that takes as input an image of a monophonic score and retrieves a sequence of music symbols as output. In the first stage, a series of convolutional filters are trained to extract meaningful features...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملUsing Sequence Alignment and Voting to Improve Optical Music Recognition from Multiple Recognizers
Digitalizing sheet music using Optical Music Recognition (OMR) is error-prone, especially when using noisy images created from scanned prints. Inspired by DNA-sequence alignment, we devise a method to use multiple sequence alignment to automatically compare output from multiple third party OMR tools and perform automatic error-correction of pitch and duration of notes. We perform tests on a cor...
متن کاملHandwritten Music Object Detection: Open Issues and Baseline Results
Optical Music Recognition (OMR) is the challenge of understanding the content of musical scores. Accurate detection of individual music objects is a critical step in processing musical documents, because a failure at this stage corrupts any further processing. So far, all proposed methods were either limited to typeset music scores or were built to detect only a subset of the available classes ...
متن کامل